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Abstract 33 

Parkinson’s disease (PD) is characterized by the formation of Lewy bodies (LBs) in the 34 

brain. LBs are mainly composed of phosphorylated and aggregated α-synuclein (α-Syn). 35 

Thus, strategies to reduce the expression of α-Syn offer promising therapeutic avenues 36 

for PD. DNA/RNA heteroduplex oligonucleotides (HDOs) are a novel technology for 37 

gene silencing. Using an α-Syn-HDO that specifically targets α-Syn, we examined 38 

whether α-Syn-HDO attenuates pathological changes in the brain of mouse models of 39 

PD. Overexpression of α-Syn induced dopaminergic neuron degeneration through 40 

inhibition of AMP-responsive-element-binding protein (CREB) and activation of 41 

methyl CpG binding protein 2 (MeCP2), resulting in brain-derived neurotrophic factor 42 

(BDNF) downregulation. α-Syn-HDO exerted a more potent silencing effect on α-Syn 43 

than α-Syn-antisense oligonucleotides (ASOs). α-Syn-HDO attenuated abnormal α-Syn 44 

expression and ameliorated dopaminergic neuron degeneration via BDNF upregulation 45 

by activation of CREB and inhibition of MeCP2. These findings demonstrated that 46 

inhibition of α-Syn by α-Syn-HDO protected against dopaminergic neuron 47 

degeneration via activation of BDNF transcription. Therefore, α-Syn-HDO may serve 48 

as a new therapeutic agent for PD. 49 

  50 
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 3 

INTRODUCTION  51 

Parkinson’s disease (PD), the second most prevalent age-related neurodegenerative 52 

disease, is characterized by progressive selective loss of dopaminergic neurons in the 53 

substantia nigra pars compacta (SNc) with the concomitant loss of nigrostriatal 54 

dopaminergic termini and the resulting motor symptoms 1. Both genetic and 55 

environmental factors play a key role in the etiology of PD 2. However, most PD occurs 56 

sporadically with unknown disease etiology, and approximately 5%–10% of PD cases 57 

are caused by genetic abnormalities 2. Both sporadic and familial PD have the same 58 

pathological hallmarks as follows: dopaminergic neuron degeneration in the SNc; and 59 

the presence of intraneuronal proteinaceous cytoplasmic inclusions, known as Lewy 60 

bodies (LBs), in the remaining dopaminergic neurons 3, 4. Alpha-synuclein (α-Syn) is 61 

the main component of LBs, and its aggregation is believed to be the major step in the 62 

pathogenesis of PD 5. Mutation or multiplication of α-Syn has been identified as the 63 

pathogenesis of both sporadic and familial PD 6-8. Soluble monomers, toxic oligomers, 64 

and insoluble fibrils of α-Syn have been detected in the brains of patients with PD 9. 65 

Several mutations in the gene that encodes α-Syn (SNCA), such as A53T, A30P, E46K, 66 

H50Q, G51D, and A53E, cause autosomal-dominant PD 10. Moreover, phosphorylation 67 

of α-Syn at the Ser129 site promotes the formation of pathogenic α-Syn aggregates, 68 

which is one of the most crucial posttranslational modifications 11. Based on the above 69 

findings, downregulation of α-Syn offers a promising therapeutic avenue preventing 70 

the progression of PD. 71 

Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin (NT) 72 

family 12-15. BDNF colocalizes with dopaminergic neurons in the SNc, promoting 73 

dopaminergic neuron survival 16, 17. Clinical research has revealed that BDNF levels are 74 

decreased in PD patients, suggesting that reduced levels of BDNF may be involved in 75 

the pathogenesis of PD 12, 18. BDNF transcription is regulated by cyclic AMP-76 

responsive-element-binding protein (CREB) and methyl CpG binding protein 2 77 

(MeCP2) 19, 20. CREB is a transcriptional activator, and MeCP2 is a transcriptional 78 

repressor of BDNF 19, 20. It has been shown that overexpression of α-Syn reduces BDNF 79 

expression 21. However, the mechanisms by which α-Syn reduce BDNF expression, 80 

resulting in PD pathology, have not been defined. 81 

Jo
urn

al 
Pre-

pro
of



 4 

In the present study, with in vitro and in vivo systems, we provide the evidence 82 

that overexpression of α-Syn induces dopaminergic neuron degeneration via BDNF 83 

downregulation by inhibition of CREB and activation of MeCP2. DNA/RNA 84 

heteroduplex oligonucleotides (HDOs) are a newly developed technology for gene 85 

silencing 22-24. Compared to the parent single-stranded gapmer antisense 86 

oligonucleotides (ASOs), a DNA/locked nucleotide acid gapmer duplex with an α-87 

tocopherol-conjugated complementary RNA is significantly more potent in reducing 88 

the expression of the targeted mRNA with fewer side effects 22, 23. We therefore 89 

designed an α-Syn-HDO that specifically targets α-Syn. α-Syn-HDO exerted a more 90 

potent silencing effect on α-Syn than α-Syn-ASO. α-Syn-HDO attenuated abnormal α-91 

Syn expression, activated BDNF transcription, and ameliorated dopaminergic neuron 92 

degeneration. These findings suggested that abnormal α-Syn expression induces 93 

dopaminergic neuron degeneration via inhibition of BDNF transcription, which is 94 

alleviated by attenuating abnormal α-Syn expression. 95 

 96 

RESULTS 97 

Overexpression of α-Syn inhibits BDNF expression via inhibition of CREB and 98 

activation of MeCP2 99 

BDNF plays an important role in neuronal survival in the dopaminergic neurons, and 100 

the level of BDNF is reduced in the SNc of PD patients 18. Here, we investigated 101 

whether overexpression of α-Syn inhibits BDNF expression via inhibition of CREB 102 

and activation of MeCP2. SH-SY5Y cells were transfected with GFP-α-Syn and lysed 103 

for western blot analysis. Overexpression of α-Syn decreased the ratio of p-104 

CREB/CREB and BDNF levels; however, it increased MeCP2 expression (Figure 1A). 105 

These findings suggest that α-Syn causes inhibition of CREB and activation of MeCP2 106 

expression, resulting in BDNF downregulation.  107 

Next, we injected AAV9-hSyn-human SNCA virus into the SNc of WT mice. 108 

Subsequently, we extracted proteins from the SNc for western blot analysis. Injection 109 

of AAV9-hSyn-human SNCA decreased the ratio of p-CREB/CREB and BDNF levels; 110 
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 5 

however, it increased MeCP2 expression (Figure 1B). 111 

    Dementia with Lewy bodies (DLB) is pathologically characterized by α-Syn, and 112 

phosphorylated α-Syn aggregates in the brain 25. Deposition of α-Syn has been shown 113 

in multiple brain regions of PD and DLB patients 25, 26. Therefore, postmortem brain 114 

samples from patients with DLB were used. We measured the protein expression of p-115 

CREB/CREB, BDNF, and MeCP2 in the striatum from DLB patients and age-matched 116 

control subjects. The ratio of p-CREB/CREB and the levels of BDNF were significantly 117 

lower in patients with DLB than in controls. Furthermore, the levels of MeCP2 in 118 

patients with DLB were significantly higher than those of controls (Figure 1C). 119 

Interestingly, there was a positive correlation between BDNF levels and p-120 

CREB/CREB ratio in the striatum from DLB patients (Figure 1C). Furthermore, there 121 

was a negative correlation between BDNF levels and MeCP2 levels in the striatum from 122 

DLB patients (Figure 1C). Collectively, these findings indicated that overexpression 123 

of α-Syn causes inhibition of CREB and activation of MeCP2, resulting in BDNF 124 

downregulation. 125 

Silencing α-Syn expression activates BDNF transcription 126 

In the present study, we designed an α-Syn-HDO that harbors locked nucleic acids 127 

(LNAs) at each end flanking the central base of DNA and 2’-O-methyl at each end 128 

flanking the central base of cRNA with conjugated α-tocopherol. The α-Syn-HDO was 129 

also tagged with or without FAM labels for tracing (Figure 2A). FAM-α-Syn-HDO 130 

was absorbed in SH-SY5Y cells in a time-dependent manner (Figure 2B). Western blot 131 

analysis showed that α-Syn-HDO decreased α-Syn and MeCP2 expression in a dose-132 

dependent manner (Figure 2C), while α-Syn-HDO increased the ratio of p-133 

CREB/CREB and BDNF expression in a dose-dependent manner (Figure 2C).  134 

Moreover, compared to α-Syn-ASO (200 nM), α-Syn-HDO (200 nM) exerted a more 135 

potent silencing effect on α-Syn at both the mRNA and protein levels (Figure S1A and 136 

B). In addition, the IC50 of α-Syn-HDO (64.06 nM) is more potent than α-Syn-ASO 137 

(99.81 nM) (Figure S1C and D). The scrambled α-Syn-HDO did not show any 138 
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 6 

silencing effect for α-Syn (Figure S2A and B). The results suggest that α-Syn-HDO 139 

effectively silences α-Syn expression. Based on the in vitro results, we examined the 140 

silencing effects of α-Syn-HDO for α-Syn in vivo. Mice were subjected to 141 

intracerebroventricular (ICV) injection of α-Syn-HDO (200 nM/2 µl/week, total 4 142 

times). Western blot analysis showed that α-Syn-HDO significantly decreased α-Syn 143 

expression in the SNc of WT mice (Figure S3A). In addition, we compared the 144 

silencing effects of α-Syn-ASO and α-Syn-HDO in vivo. ICV injection of α-Syn-ASO 145 

or α-Syn-HDO (200 nM/2 µl/week, total 4 times) decreased α-Syn and MeCP2 146 

expression (Figure S3B), while α-Syn-ASO or α-Syn-HDO increased the p-147 

CREB/CREB ratio and BDNF expression in the SNc of WT mice (Figure S3B). 148 

Importantly, α-Syn-HDO was more potent than α-Syn-ASO. These results suggest that 149 

α-Syn-HDO is associated with the activation of BDNF transcription by silencing α-Syn 150 

expression. 151 

    To further elucidate the action of α-Syn-HDO in stimulating BDNF transcription, 152 

we performed luciferase reporter, chromatin immunoprecipitation (ChIP)-PCR, and 153 

quantitative real-time PCR (qPCR) assays. The data showed that α-Syn-HDO activated 154 

the Bdnf exon IV promoter, which was blocked by CREB knockdown (Figure 2D and 155 

E). In addition, mutation in the CREB-binding motif completely abolished promoter 156 

activity (Figure 2E). In addition, ChIP-PCR analysis of genomic DNA 157 

immunoprecipitated with the p-CREB antibody demonstrated that α-Syn-HDO induced 158 

the interaction between p-CREB and the Bdnf exon IV promoter (Figure 2F). Moreover, 159 

α-Syn-HDO enhanced the Bdnf mRNA levels (Figure 2G). Collectively, these data 160 

demonstrated that α-Syn-HDO activates CREB, resulting in BDNF transcription. 161 

α-Syn-HDO is associated with activation of CREB and inhibition of MeCP2, 162 

resulting in BDNF upregulation in α-Syn-treated SH-SY5Y cells 163 

Overexpression of α-Syn leads to inhibition of CREB and activation of MeCP2, thereby 164 

causing BDNF downregulation. Hence, we further explored whether α-Syn-HDO 165 

associates with BDNF upregulation in α-Syn-treated SH-SY5Y cells. To address this 166 
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hypothesis, SH-SY5Y cells were transfected with GFP-α-Syn or GST-α-Syn. 167 

Overexpression of α-Syn significantly decreased the ratio of p-CREB/CREB and 168 

BDNF levels but it increased MeCP2 expression (Figure 3A). α-Syn-HDO reversed 169 

the effects of α-Syn overexpression in GFP-α-Syn-transfected SH-SY5Y cells (Figure 170 

3A). Immunofluorescence staining revealed that overexpression of α-Syn caused the 171 

redistribution of p-CREB and MeCP2 in the nucleus of SH-SY5Y cells. α-Syn induced 172 

MeCP2 nuclear localization and more punctate p-CREB in the nucleus, and this 173 

redistribution was reversed by α-Syn-HDO (Figure 3B). These data demonstrated that 174 

α-Syn-HDO can attenuate BDNF downregulation in α-Syn-treated SH-SY5Y cells. 175 

α-Syn-HDO attenuates dopaminergic neuron degeneration in an α-Syn-induced 176 

PD mouse model 177 

To examine potential therapeutic efficacy of α-Syn-HDO, we investigated whether α-178 

Syn-HDO attenuates dopaminergic neuron degeneration via activation of BDNF 179 

transcription in AAV9-hSyn-human SNCA-treated mice. First, AAV9-hSyn-human 180 

SNCA was injected into the SNc of wild-type (WT) mice to construct a PD mouse 181 

model (Figure 4A). Subsequently, mice were subjected to intracerebroventricular (ICV) 182 

injection of FAM-α-Syn-HDO or α-Syn-HDO (200 nM/2 µl/week, total 4 times) 183 

(Figure 4A). Following confirmation of the distribution of FAM-α-Syn-HDO in the 184 

mouse brains (Figure 4B), behavioral tests showed that α-Syn-HDO significantly 185 

prolonged the duration of AAV9-hSyn-human SNCA-treated mice on the rotarod test 186 

compared to those of the vehicle group (Figure 4C). Immunofluorescence staining 187 

demonstrated that AAV9-hSyn-human SNCA administration significantly decreased 188 

TH immunoreactivity but increased IBA1 and GFAP immunoreactivity in the SNc, and 189 

these changes were reversed by α-Syn-HDO (Figure 4D and Figure S4). Using western 190 

blot analysis, we found that AAV9-hSyn-human SNCA significantly downregulated 191 

TH expression but increased α-Syn levels in the SNc, which was reversed by α-Syn-192 

HDO (Figure 4E). Collectively, these data suggest that α-Syn-HDO attenuates 193 

dopaminergic neuron degeneration and ameliorates PD-like pathology in AAV9-hSyn-194 
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 8 

human SNCA-treated mice. 195 

    To further validate the connections of therapeutic activity and the above regulation 196 

of α-Syn-HDO in vivo, we examined signaling in the SNc of AAV9-hSyn-human 197 

SNCA-treated mice. ChIP-PCR results showed that p-CREB partially dissociated from 198 

the Bdnf exon IV promoter, which was reversed by α-Syn-HDO (Figure 4F). Next, we 199 

examined the ratio of p-CREB/CREB and the protein levels of BDNF and MeCP2 in 200 

the SNc of AAV9-hSyn-human SNCA-treated mice. The data showed that the p-201 

CREB/CREB ratio and BDNF expression were decreased and that MeCP2 expression 202 

was increased. Interestingly, α-Syn-HDO increased the ratio of p-CREB/CREB and 203 

decreased MeCP2 expression, leading to BDNF upregulation (Figure 4G). Therefore, 204 

these findings indicated that α-Syn-HDO can produce neuroprotective effects by 205 

promoting BDNF expression in AAV9-hSyn-human SNCA-treated mice via activation 206 

of CREB and inhibition of MeCP2. 207 

 208 

α-Syn-HDO attenuates dopaminergic neuron degeneration in MTPT-treated α-209 

Syn-A53T mice 210 

MPTP is the best characterized toxin that causes PD pathology, and injection of MPTP 211 

accelerates PD pathology in SNCA mice in vivo 12, 27. Hence, we further examined the 212 

neuroprotective effect of α-Syn-HDO in MTPT-treated α-Syn-A53T mice. ICV 213 

injection of α-Syn-HDO significantly increased the duration of MPTP-treated α-Syn-214 

A53T mice on the rotarod test compared to the vehicle group (Figure 5A and B). 215 

Immunofluorescence staining indicated that α-Syn-HDO significantly increased TH 216 

immunoreactivity but decreased IBA1 and GFAP immunoreactivity in the SNc of 217 

MPTP-treated α-Syn-A53T mice compared to the vehicle group (Figure 5C and Figure 218 

S5). Western blot analysis showed that α-Syn-HDO increased TH immunoreactivity 219 

but decreased α-Syn protein expression in the SNc of MPTP-treated α-Syn-A53T mice 220 

(Figure 5D). These data demonstrated that α-Syn-HDO ameliorates PD-like pathology 221 

in MPTP-treated α-Syn-A53T mice. 222 

    ChIP-PCR results showed that p-CREB partially dissociated from the Bdnf exon 223 
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IV promoter in MPTP-treated α-Syn-A53T mice, which was reversed by α-Syn-HDO 224 

(Figure 5E). We also found that the p-CREB/CREB ratio and BDNF expression were 225 

decreased and that MeCP2 expression was increased, and these changes in MPTP-226 

treated α-Syn-A53T mice were reversed by α-Syn-HDO (Figure 5F). Therefore, these 227 

findings suggested that α-Syn-HDO can produce neuroprotective effects by promoting 228 

BDNF expression in MPTP-treated α-Syn-A53T mice. 229 

α-Syn-HDO blocks α-Syn pathology in vitro and in vivo 230 

To determine whether the reduction of α-Syn expression by α-Syn-HDO ameliorates 231 

α-Syn aggregation, we assessed the effects of α-Syn-HDO on the aggregation and 232 

phosphorylation of α-Syn in α-Syn-preformed fibrils (PFFs). We detected the 233 

aggregation of α-Syn in HEK293-α-Syn cells. After treatment with PFFs for 24 hours, 234 

YFP-α-Syn started to aggregate into small fluorescence spots located in the intracellular 235 

space, and this effect was abolished by α-Syn-HDO treatment (Figure S6A and S6B). 236 

Western blot analysis showed that the PFFs induced phosphorylation of α-Syn at S129 237 

(p-S129), which was attenuated by α-Syn-HDO (Figure S6C). PFFs were injected into 238 

the SNc of α-Syn-A53T mice in vivo, which led to the cell-to-cell transmission of 239 

pathologic α-Syn and PD-like Lewy pathology in the SNc (Figure 6A). Treatment with 240 

α-Syn-HDO significantly attenuated the PFFs-induced Lewy pathology in the SNc 241 

(Figure 6A). In behavioral tests, α-Syn-HDO prolonged the duration of PFFs-treated 242 

α-Syn-A53T mice on the rotarod test compared to the vehicle group (Figure 6B). 243 

Immunofluorescence staining demonstrated that α-Syn-HDO significantly increased 244 

TH immunoreactivity but decreased IBA1 and GFAP immunoreactivity in the SNc of 245 

PFFs-treated α-Syn-A53T mice (Figure 6C and Figure S7A and S7B). Western blot 246 

assays showed that α-Syn-HDO treatment significantly ameliorated the decreased 247 

expression of TH and increased expression of p-S129 and α-Syn in the SNc of PFFs-248 

treated α-Syn-A53T mice (Figure 6D). These results indicated that α-Syn-HDO could 249 

ameliorate the phosphorylation and aggregation of α-Syn, resulting in attenuation of 250 

PD pathology. 251 

    In addition, ChIP-PCR results showed that p-CREB partially dissociated from the 252 

Bdnf exon IV promoter in PFFs-treated α-Syn-A53T mice, which was reversed by α-253 
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 10 

Syn-HDO (Figure 6E). Western blot results found that the p-CREB/CREB ratio and 254 

BDNF expression were decreased and that MeCP2 expression was increased, and these 255 

changes were reversed by α-Syn-HDO in PFFs-treated α-Syn-A53T mice (Figure 6F). 256 

Therefore, these findings indicated that α-Syn-HDO exerts neuroprotective effects by 257 

promoting BDNF expression in PFFs-treated α-Syn-A53T mice. 258 

 259 

DISCUSSION 260 

In the present study, overexpression of α-Syn induced dopaminergic neuron 261 

degeneration via inhibition of CREB and activation of MeCP2, resulting in BDNF 262 

downregulation. Silencing abnormal α-Syn expression using α-Syn-HDO activated 263 

CREB and inhibited MeCP2, resulting in BDNF upregulation and amelioration of 264 

dopaminergic neuron degeneration in PD mouse models. Our results suggest that 265 

overexpression of α-Syn inhibits BDNF expression, resulting in PD pathology. Thus, 266 

downregulation of abnormal α-Syn expression offers a promising therapeutic avenue 267 

preventing the progression of PD. 268 

Accumulating studies have shown that BDNF colocalizes with dopaminergic 269 

neurons in the SNc and that BDNF promotes dopaminergic neuronal survival 12, 28, 29. 270 

Reduced levels of BDNF have been demonstrated in the postmortem brains of PD 271 

patients 12, 18, 30. α-Syn-induced blockade of TrkB neurotrophic activation triggers 272 

dopaminergic neuronal death in a PD mouse model 12. In contrast, overexpression of 273 

BDNF attenuates 6-OHDA- or MPTP-induced nigrostriatal degeneration, and it 274 

improves rotational behavioral deficits by regulating dopaminergic neurotransmission 275 

31, 32. Therefore, BDNF is integral to both the pathophysiology of PD and the therapeutic 276 

mechanisms for PD. In the present study, we found that overexpression of α-Syn 277 

inhibited BDNF expression by decreasing the ratio of p-CREB/CREB and increasing 278 

MeCP2 expression. In addition, the ratio of p-CREB/CREB and the levels of BDNF 279 

were significantly lower in the postmortem brain samples from patients with DLB, 280 

whereas the levels of MeCP2 were significantly higher in these samples. Therefore, 281 

these data indicated that overexpression of α-Syn inhibits CREB and activates MeCP2, 282 

resulting in BDNF downregulation, which plays a role in the pathogenesis of PD. 283 
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    Overexpression of BDNF has been shown to attenuate dopaminergic neuron 284 

degeneration 31, 32. Our data showed that α-Syn-HDO attenuated dopaminergic neuronal 285 

degeneration in PD mouse models. Therefore, we examined whether α-Syn-HDO 286 

promotes BDNF transcription by inhibiting of abnormal α-Syn expression. In vitro data 287 

revealed that α-Syn-HDO promoted p-CREB binding with Bdnf exon IV promoter, 288 

resulting in Bdnf mRNA expression. The results indicated that α-Syn-HDO activates 289 

BDNF transcription. In vivo data suggested that α-Syn-HDO attenuated dopaminergic 290 

neuron degeneration in the SNc of PD mouse models, and that α-Syn-HDO attenuated 291 

the dissociated effects of the p-CREB binding with Bdnf exon IV promoter in the SNc 292 

of PD mouse models. In addition, α-Syn-HDO restored the reduction of p-CREB/CREB 293 

ratio and increased MeCP2 expression, resulting in BDNF expression through 294 

inhibition of abnormal α-Syn expression. Thus, it is likely that α-Syn-HDO might 295 

produce neuroprotective effects through inhibition of α-Syn expression in PD mouse 296 

models, leading to upregulation of CREB activity and downregulation of MeCP2 297 

expression, which activated BDNF transcription. Besides, the abnormal α-Syn 298 

promotes the production of reactive oxygen species (ROS) through interaction with 299 

complex I of the mitochondrial respiratory chain and interferes with its function 
33

. 300 

Accumulating evidence suggests that the toxic interaction between dopamine (DA), DA 301 

metabolites, and abnormal α-Syn might promote an oxidative environment within 302 

dopaminergic neurons. Oxidative modification of α-Syn by DA metabolites has been 303 

proposed to be responsible for the selective vulnerability to dopaminergic neurons 
34, 35

. 304 

The oligomeric α-Syn has been suggested to represent the primary toxic species 305 

responsible for dopaminergic neurotoxicity 
34

. These evidences suggest that abnormal 306 

α-Syn may cause neurodegeneration in other pathways excluding BDNF pathway. 307 

Suppression of abnormal α-Syn by α-Syn-HDO may prevent neurodegeneration 308 

beyond the CREB-BDNF signaling pathway. Therefore, it is of interest to investigate 309 

the role of other signaling pathways on the neuroprotective effects of α-Syn-HDO. In 310 

addition, altered levels of p-CREB and MeCP2 can affect the regulation of numerous 311 

genes. It is, therefore, possible that changes in widespread genes could affect MPTP-312 

induced neurotoxicity, contributing to the effects of α-Syn-HDO in MPTP-treated α-313 

Syn-A53T mice.  314 
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    Chronic neuroinflammation, one of the key pathogenic factors responsible for 315 

neurodegenerative disorders, can lead to elevated levels of glia-derived cytokines, 316 

which exert neurotoxic effects on vulnerable dopaminergic neurons 
36-38

. In the animal 317 

models of PD and PD patients, reactive microglia / astrocytes (CD11b / GFAP) were 318 

found in the SNc, indicating the possible involvement of gliosis-derived inflammatory 319 

processes responsible for PD 
39

. Inhibition of glial activation-derived inflammatory 320 

response contributes to the protection of dopaminergic neurons in vivo and in vitro 
40

. 321 

In this study, we found that chronic administration of α-Syn-HDO could prevent glial 322 

activation and attenuate TH neurons degeneration in the SNc of PD mouse models. 323 

Taken together, the present data suggest that the neuroprotective effects of α-Syn-HDO 324 

might be partly mediated by inhibiting the activation of glial SNc of PD mouse models 325 

although further study is needed. 326 

    As demonstrated by various genetic and biochemical studies, α-Syn is the major 327 

component of LBs and plays a predominant role in the pathogenesis of PD and DLB 41, 328 

42. There is extensive phosphorylation of α-Syn at S129 in LBs 43. Therefore, the most 329 

likely hypothesis is that phosphorylation of α-Syn at Ser129 accelerates the formation 330 

of insoluble α-Syn aggregates during the onset of PD 44. Moreover, exogenous PFFs 331 

have been reported to induce the aggregation of endogenous α-Syn 42, 45. Using 332 

HEK293 cells stably transfected with human α-Syn, we found that α-Syn-HDO 333 

decreased the expression, phosphorylation, and aggregation of α-Syn. In addition, 334 

dopaminergic neuron degeneration in PFFs-treated α-Syn-A53T mice was attenuated 335 

by α-Syn-HDO. These data suggested that α-Syn-HDO reduces α-Syn levels, 336 

consequently alleviating α-Syn-induced pathological changes. 337 

    The present study has some limitations. The previous study has shown that the α-338 

Syn knock out (KO) mice did exhibit abnormalities in synaptic morphology and 339 

function, along with fairly subtle behavioral changes 46, 47. The α-Syn-HDO is widely 340 

distributed throughout the brain by ICV injection. Therefore, the neurotoxic effects and 341 

off-target effects of α-Syn-HDO should be further studied, especially in normal mice 342 

for long periods of time. Moreover, the striatum includes caudate, putamen and globus 343 

pallid, which is innervated from multiple brain regions, so any changes observed cannot 344 

exclusively be attributed to the nigrostriatal pathway. In addition, the striatum is also 345 

only the terminal region of the nigrostriatal system and changes in transcription factors 346 
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may not only reflect what is happening in the soma of the neurons in the nigra. Future 347 

study using post-mortem samples of nigra is needed. Finally, it has shown that 348 

overexpression of human-α-Syn under the Thy1 regulatory element promotes 349 

expression of human-α-Syn in multiple neuronal subpopulations. Intriguingly, this did 350 

not include TH-positive dopaminergic neurons which do not degenerate in these mice48, 351 

inconsistent with our results. The difference may be due to different promoters for 352 

human-α-Syn. Future detailed studies are necessary to explore these differences.  353 

    In conclusions, the current study suggests that overexpression of α-Syn induces 354 

dopaminergic neurons degeneration through inhibition of BDNF transcription, and that 355 

the novel nucleic acid agent α-Syn-HDO can attenuate dopaminergic neurons 356 

degeneration in PD mouse models via activation of BDNF transcription. Therefore, α-357 

Syn-HDO would be a potential new therapeutic agent for PD. 358 

 359 

MATERIALS AND METHODS  360 

Mice and cell lines 361 

Male adult C57BL/6 mice (8 weeks old, 20–25 g) were obtained from Guangdong 362 

Experimental Animal Center. Male transgenic mice expressing A53T human α-Syn 363 

(12 weeks old, 25–30 g) were obtained from the Jackson Laboratory (gift from Dr. 364 

Zhentao Zhang). The animals were housed under controlled temperature and kept in a 365 

12-h light/dark cycle with ad libitum access to food and water. The animal protocol was 366 

approved by the Jinan University Institutional Animal Care and Use Committee, and 367 

all experiments were performed following the Guide for Animal Experimentation of 368 

Jinan University. HEK293T cells, SH-SY5Y cells, and HEK293T cells stably 369 

expressing YFP-labeled human α-synuclein (HEK293-α-Syn) were cultured in DMEM 370 

or DMEM/F-12 (basal media) supplemented with 10% fetal bovine serum (Excell Bio.) 371 

and penicillin (100 units/mL)–streptomycin (100 μg/mL). Cells were cultured at 37 °C 372 

in a humidified incubator containing 5% CO2. HEK293-α-Syn cells were kindly gifted 373 

by Prof. Dimond 49. 374 
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 375 

Materials 376 

MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine) was purchased from Yuanye 377 

Bio-Technology (Shanghai, China) and dissolved in 0.9% sterile saline. MPTP 378 

(30 mg/kg) was administered intraperitoneally (i.p.) to mice. The doses of MPTP 379 

selected correspond to those previously reported 50. The pEGFP-α-Syn and mGST-α-380 

Syn plasmids were kindly gifted by Dr. Zhentao Zhang (Department of Neurology, 381 

Renmin Hospital of Wuhan University). 382 

    Antisense oligonucleotides (ASOs) for α-Syn and cRNA were purchased from 383 

TsingKe Biological Technology (Wuhan, China) or Ajinomoto Bio-Pharma (Osaka, 384 

Japan) and solubilized in 0.9% sterile saline before use. For the ion of α-Syn-HDO, 385 

equimolar amounts of DNA and cRNA strands were heated in 0.9% sterile saline at 386 

95 °C for 5 minutes and slowly cooled to room temperature. HDO harbored locked 387 

nucleic acids (LNAs) at each end flanking the central base of DNA with or without a 388 

FAM (6-carboxy-fluorescein) label, and HDO harbored 2’-O-methyl at each end 389 

flanking the central base of cRNA with conjugated α-tocopherol. The sequences of 390 

ASOs and cRNA targeting α-Syn used in our experiments are as follows: ASO-α-Syn, 391 

G(L)^C(L)^t^c^c^c^t^c^c^a^c^t^g^T(L)^C(L)^T(L) 4; cRNA, 392 

a(M)^g(M)^a(M)^caguggaggga^g(M)^c(M); where L indicates the locked nucleic 393 

acids; M indicates the 2’-O-methyl modifications; and ^ indicates the phosphorothioate 394 

bond. SH-SY5Y cells were transfected with different doses of α-Syn-HDO for 24 h 395 

using Lipofectamine 3000 (Invitrogen) according to the manufacturer’s instructions. 396 

After transfection for 24 h, cells were collected for luciferase reporter, ChIP-PCR, 397 

immunofluorescence staining, qPCR and western blot assays. 398 

    Full-length human α-Syn was expressed in BL21 (DE3) competent E. coli (Life 399 

Technologies) and purified as previously described 51. The purified recombinant α-Syn 400 

was stored at -80 °C until use. Preformed fibrils (PFFs) were made by diluting 401 

recombinant α-Syn to 5 mg/ml in sterile Dulbecco's PBS (Cellgro, Mediatech; pH 402 

adjusted to 7.0, without Ca2+ or Mg2+) followed by incubation at 37 °C with constant 403 
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agitation at 1,000 rpm for 7 days. PFFs were sonicated with a water-bath cup-horn 404 

sonicator (Fisher Scientific, USA) at 50% power for 5 minutes before use. 405 

 406 

Treatment with AAV9-hSyn-human SNCA, PFFs, and α-Syn-HDO 407 

Mice were anesthetized with isoflurane and fixed to a stereotaxic apparatus. AAV9-408 

hSyn-human SNCA (6.58×1013 vg / ml, Vigenebio Biosciences, Jinan, China) or PFFs 409 

were injected into the substantia nigra (1.2 mm lateral, -4.3 mm ventral, and -3.1 mm 410 

from Bregma) 1. Virus (2 μl) or PFFs (2.5 μl) were injected into each site using a 10 μl 411 

Hamilton syringe with a fixed needle at a rate of 0.25 μl/min using a microinjector 412 

pump (KDS, Stoelting). The needle remained in place for 5 minutes after the viral 413 

suspension or PFFs were completely injected followed by slow removal (over 2 414 

minutes). The mice were placed on a heating pad until recovery from anesthesia. 415 

    α-Syn-HDO was injected into the right lateral ventricle using the following 416 

stereotaxic coordinates: 0.8 mm lateral, -2.1 mm ventral, and 0.74 mm from bregma 417 

following anesthetization. For multiple injections of α-Syn-HDO over four weeks (α-418 

Syn-HDO: 200 nM/2 μl/week, total 4 times), a guiding cannula (RWD Life Science, 419 

China) was implanted using the coordinates described above. The expected depth was 420 

1.3 mm ventrally, and drugs were injected by an injection cannula through a guiding 421 

cannula. 422 

 423 

Rotarod test 424 

For the rotarod test, mice were trained for 3 sequential days on the rotarod. Each daily 425 

practice session consisted of placing the subject on the rotarod at a slow rotational 426 

speed (5 rpm) for a maximum of 5 min. Mice were given three test trials on the test 427 

day. The rotational speed of rotarod was modulated from 0 rpm to a maximum 40 428 

rpm. It was gradually increased during the trial at a rate of 0.1 rpm/s. Each trial was 429 

started and then sustained for 5 minutes. The trial was stopped when the mouse fell 430 

(activating a switch that automatically stopped the timer) or when 5 minutes had 431 
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elapsed. The residence time on the rotarod was counted using a stopwatch. The results 432 

showed the average value of the three trials. 433 

 434 

qPCR assay 435 

Levels of α-Syn and Bdnf mRNA were examined by quantitative real-time PCR. RNA 436 

was extracted using an Eastep® Super Kit (Promega) followed by reverse transcription 437 

with GoScriptTM Reverse Transcriptase Mix, Oligo (dT) (Promega) to generate cDNA. 438 

The real-time PCR assays were performed with the ChamQTM SYBR® qPCR Master 439 

Mix Kit (Vazyme) using the 788BR05175 Real-Time PCR System. The PCR 440 

amplification protocol was as follows: 40 cycles of denaturation at 95 °C for 30 seconds, 441 

annealing at 55 °C for 30 seconds, and extension for 30 seconds at 72 °C. The primer 442 

sequences were as follows: α-Syn forward, 5’ TGACGGGTGTGACAGCAGTAG 3’; 443 

α-Syn reverse, 5’ CAGTGGCTGCTGCAATG 3’; Bdnf forward, 5’ 444 

TTGTTTTGTGCCGTTTACCA 3’; Bdnf reverse, 5’ 445 

GGTAAGAGAGCCAGCCACTG 3’ for mouse sample; Bdnf forward, 5’ 446 

CATCCGAGGACAAGGTGGCTTGG3’; and Bdnf reverse, 5’ 447 

GTCCTCATCCAACAGCTCTTCTATC3’ for human sample4, 52, 53. The target genes 448 

were analyzed by the 2−ΔΔCt method. 449 

 450 

Western blot analysis 451 

Cell and brain homogenates were lysed in RIPA buffer. Protein concentrations were 452 

determined by a Coomassie Brilliant Blue protein assay kit (Bio–Rad). Postmortem 453 

brain samples (striatum) from DLB patients and age-matched controls were collected 454 

at Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology (Tokyo, Japan). 455 

Brain samples were selected using the Brain Bank for Aging Research (BBAR) Lewy 456 

bodies rating system 54. Total protein (20 μg) was separated on 10%-12% sodium 457 

dodecyl sulfate-polyacrylamide gels and then transferred to polyvinylidene difluoride 458 

(PVDF) membranes. The membranes were blocked with 5% milk at room temperature 459 

for 1 hour followed by incubation with primary antibodies at 4 °C for 12 hours. 460 
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Membranes were then washed three times with TBST and incubated with the 461 

corresponding secondary antibody for 1 hour at room temperature. After an additional 462 

three washes, targeted proteins were detected using the enhanced chemiluminescence 463 

method scanned by the Tanon-5200CE imaging system (Tanon, Shanghai, China). The 464 

expression levels of target proteins were normalized to β-actin as a loading control. The 465 

following primary antibodies were used: anti-phospho-CREB antibody (1:1000, 9198S) 466 

and CREB antibody (1:1000, 9197S) were purchased from Cell Signaling Technology; 467 

anti-MeCP2 antibody (1:1000, M6818) was purchased from Sigma; anti-BDNF 468 

antibody (1:1000, ab108319), anti-phospho-α-Syn antibody (1:1000, ab51253), and 469 

anti-α-Syn antibody (1:1000, ab1903) were purchased from Abcam; anti-tyrosine-470 

hydroxylase (TH) antibody (1:1000, GTX10372) was purchased from GTX (GeneTex); 471 

and anti-β-actin antibody was purchased from EarthOx. The HRP-conjugated anti-472 

rabbit/mouse IgG antibody was purchased from BIO-RAD. 473 

 474 

Immunofluorescence staining 475 

Cell or mouse brain sections were preplated on cover glasses and fixed in 4% PFA for 476 

10 minutes at room temperature. After treatment, the glasses were washed with PBS 3 477 

times and blocked using 3% BSA with 0.3% Triton X-100 for 30 minutes followed by 478 

incubation with anti-TH (1:500, GTX10372), anti-IBA1 (1:500, GTX632426), or anti-479 

GFAP (1:500, Affinity, DF6040) primary antibodies for 24 hours at 4 °C. Following 480 

washing with PBS, cells were incubated with Alexa Fluor 488/594 anti-mouse/rabbit 481 

secondary antibody (1:500) for 2 hours at room temperature in the dark followed by 482 

staining with DAPI to visualize the nuclei. Cells were washed with PBS and visualized 483 

by a fluorescence microscope (Olympus BX53, Japan). 484 

 485 

Luciferase reporter assay 486 

HEK293T cells were cotransfected with BDNF exon IV luciferase reporter plasmid 487 

together with pRL-TK Renilla luciferase plasmid (Promega) and α-Syn-HDO, siRNA-488 

CREB, or CREB mutant plasmid. after transfection for 24 hours, cells were collected 489 
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and analyzed using the dual-luciferase reporter assay kit (Promega) according to the 490 

manufacturer’s protocol. 491 

 492 

ChIP-PCR assay 493 

Following treatment with α-Syn-HDO, cells or brain samples were analyzed by a ChIP-494 

PCR assay using the SimpleChIP® Enzymatic Chromatin IP Kit (Cell Signaling) 495 

according to the manufacturer’s protocol. For the ChIP assay, 7.5 μg of p-CREB 496 

antibody was added to the sample homogenate, mixed, and incubated overnight at 4 °C. 497 

The washing, elution, and reverse cross-linking to free DNA were performed according 498 

to the manufacturer’s protocol. BDNF exon IV-specific primers were used for 499 

amplification of the promoter region using the following primer sequences: forward 5’ 500 

GGCTTCTGTGTGCGTGAATTTGC 3’ and reverse 5’ 501 

AAAGTGGGTGGGAGTCCACGAG’20. The PCR amplicon was separated on a 2% 502 

agarose gel after 35 cycles of PCR (denaturation at 95 °C for 30 seconds, annealing at 503 

58 °C for 30 seconds, and extension at 72 °C for 30 seconds). 504 

 505 

Statistical analysis 506 

All data results are expressed as the mean ± standard error of the mean (SEM) and were 507 

analyzed using PASW Statistics 20 software (formerly SPSS Statistics, SPSS). 508 

Potential differences between the mean values were evaluated using one-way analysis 509 

of variance followed by post hoc Fisher's least significant difference test or two-way 510 

analysis of variance; when appropriate, post hoc comparisons were performed using the 511 

unpaired t-test. Student’s t-test was used to compare the differences between two 512 

groups unless otherwise specified. Asterisks were used to indicate significance: *P < 513 

0.05, **P < 0.01, and ***P < 0.001. Values > 0.05 were considered not significant (ns). 514 
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Figures legends 726 

Figure 1. Overexpression α-Syn inhibits BDNF expression 727 

A: Western blot assay for p-CREB, CREB, BDNF, and MeCP2 in SH-SY5Y cells 24 728 

hours after GFP-α-Syn transfection (mean ± SEM, n = 4 per group, Student’s t-test, *p 729 

< 0.05, **p < 0.01, and ***p < 0.001). B: Protein expression of p-CREB, CREB, BDNF, 730 

and MeCP2 in the SNc of human AAV-α-Syn-treated mice (mean ± SEM, n = 6 per 731 

group, Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 0.001). C: Protein expression 732 

of p-CREB, CREB, BDNF, and MeCP2 in the striatum from DLB patients and controls 733 

(mean ± SEM, n = 10 per group, Student’s t-test, *p < 0.05, **p < 0.01, and ***p < 734 

0.001). There was a positive correlation between BDNF levels and the ratio of 735 

phosphorylated CREB/CREB in DLB patients (n = 10). Furthermore, there was a 736 

negative correlation between BDNF levels and MeCP2 levels in DLB patients (n = 10). 737 

 738 

Figure 2. α-Syn-HDO activates BDNF transcription 739 

A: Schematic illustration of the construction of α-Syn-HDO. B: The internalization of 740 

FAM-α-Syn-HDO visualized by microscopy at 0 minutes, 30 minutes, and 1 hour 741 

following transfection of FAM-α-Syn-HDO (400 nM), Scale bar = 50 μm. C: Western 742 

blot analysis of α-Syn, p-CREB, CREB, MeCP2, and BDNF in SH-SY5Y cells treated 743 

with various dosages of α-Syn-HDO (mean ± SEM, n = 4 per group, one-way ANOVA, 744 

*p < 0.05 and **p < 0.01). D: Luciferase assay for BDNF IV promoters. BDNF exon 745 

IV luciferase promoters and/or α-Syn-HDO were transfected into HEK293T cells. 746 

(mean ± SEM, n = 4 per group, one-way ANOVA, ***p < 0.001). E: BDNF exon IV 747 

luciferase promoter and α-Syn-HDO, siRNA-CREB plasmids, or mutation (Mut) 748 

plasmids were cotransfected into HEK293T cells (mean ± SEM, n = 4 per group, one-749 

way ANOVA, **p < 0.01 and ***p < 0.001). F: ChIP-PCR assays demonstrated that 750 

p-CREB specifically binds to genomic DNA of BDNF exon IV promoter binding 751 

motifs. p-CREB protein-DNA crosslinking samples were obtained from SH-SY5Y 752 

cells treated with α-Syn-HDO or vehicle via coimmunoprecipitation with an anti-p-753 

CREB antibody. PCR was performed with primers targeting the BDNF exon IV 754 

promoter. An anti-histone H3 antibody coupled with GAPDH primers was used as the 755 

positive control (mean ± SEM, n = 4 per group, Student’s t-test, *p < 0. 05). G: qPCR 756 
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assay for BDNF in SH-SY5Y cells treated with α-Syn-HDO (mean ± SEM, n = 5 per 757 

group, Student’s t-test, *p < 0. 05). 758 

 759 

Figure 3. α-Syn-HDO attenuates BDNF downregulation in α-Syn-treated SH-760 

SY5Y cells 761 

A: Western blot assay for p-CREB, CREB, BDNF, and MeCP2 in GFP-α-Syn-762 

transfected SH-SY5Y cells treated with α-Syn-HDO for 24 hours (mean ± SEM, n = 5 763 

per group, one-way ANOVA, *p < 0.05 and **p < 0.01). B: Immunofluorescence 764 

staining for p-CREB and MeCP2 in GST-α-Syn-transfected SH-SY5Y cells treated 765 

with α-Syn-HDO for 24 hours. Scale bar = 50 μm. 766 

 767 

Figure 4. α-Syn-HDO attenuates dopaminergic neuron degeneration in AAV9-768 

hSyn-human SNCA-treated mice 769 

A: Schedule of treatment and graphical illustration of human AAV-α-Syn injection. B: 770 

Graphical illustration of the intracerebroventricular injection site. C: Results of the 771 

rotarod test (mean ± SEM, n = 10–12 per group, one-way ANOVA, *p < 0.05 and **p 772 

< 0.01). D: Immunofluorescence staining for TH in the SNc. Quantification analysis of 773 

TH (mean ± SEM, n = 5 per group, one-way ANOVA, **p < 0.01 and ***p < 0.001). 774 

Scale bar = 50 μm. E: Western blot assay for TH and α-Syn in the SNc (mean ± SEM, 775 

n = 5 per group, one-way ANOVA, *p < 0.05, **p < 0.01 and ***p < 0.001). F: ChIP-776 

PCR assays for p-CREB and BDNF exon IV promoter in the SNc (mean ± SEM, n = 5 777 

per group, one-way ANOVA, *p < 0.05, **p < 0.01, and ***p < 0.001). G: Western 778 

blot assay for p-CREB/CREB, BDNF, and MeCP2 in the SNc (mean ± SEM, n = 5 per 779 

group, one-way ANOVA, *p < 0.05, **p < 0.01, and ***p < 0.001). 780 

 781 

Figure 5. α-Syn-HDO attenuates dopaminergic neuron degeneration in MPTP-782 

treated A53T mice 783 
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A: Schedule of treatment. B: Results of the rotarod test (mean ± SEM, n = 10–12 per 784 

group, one-way ANOVA, *p < 0.05 and **p < 0.01). C: Immunofluorescence staining 785 

for TH in the SNc. Quantification analysis of TH (mean ± SEM, n = 5 per group, one-786 

way ANOVA, **p < 0.01 and ***p < 0.001). Scale bar = 50 μm. D: Western blot assay 787 

for TH and α-Syn in the SNc (mean ± SEM, n = 5 per group, one-way ANOVA, *p < 788 

0.05, **p < 0.01, and ***p < 0.001). E: ChIP-PCR assays for p-CREB and BDNF exon 789 

IV promoter in the SNc (mean ± SEM, n = 5 per group, one-way ANOVA, *p < 0.05, 790 

**p < 0.01 and ***p < 0.001). F: Western blot assay for p-CREB/CREB, BDNF, and 791 

MeCP2 in the SNc (mean ± SEM, n = 5 per group, one-way ANOVA, *p < 0.05, **p 792 

< 0.01, and ***p < 0.001). 793 

 794 

Figure 6. α-Syn-HDO prevents α-Syn-induced PD pathology 795 

A: Immunofluorescence staining for TH and p-α-Syn in the SNc. Scale bar = 50 μm. B: 796 

The schedule of treatment and the rotarod test results (mean ± SEM, n = 11 or 12 per 797 

group, one-way ANOVA, **p < 0.01 and ***p < 0.001). C: Immunofluorescence 798 

staining for TH in the SNc. Quantification analysis of TH (mean ± SEM, n = 5 per 799 

group, one-way ANOVA, *p < 0.05 and **p < 0.01). Scale bar = 50 μm. D: Western 800 

blot assay for TH, p-α-Syn, and α-Syn in the SNc (mean ± SEM, n = 5 per group, one-801 

way ANOVA, *p < 0.05 and **p < 0.01). E: ChIP-PCR assays for p-CREB and BDNF 802 

exon IV promoter in the SNc (mean ± SEM, n = 5 per group, one-way ANOVA, *p < 803 

0.05, **p < 0.01 and ***p < 0.001). F: Western blot assay for p-CREB/CREB, BDNF, 804 

and MeCP2 in the SNc (mean ± SEM, n = 5 per group, one-way ANOVA, *p < 0.05, 805 

**p < 0.01, and ***p < 0.001). 806 
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Abnormal α-Syn expression induces dopaminergic neuron degeneration via inhibition 

of BDNF transcription. The novel nucleic acid agent α-Syn-HDO can attenuate 

dopaminergic neurons degeneration in PD mouse models via activation of BDNF 

transcription. 
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